Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0357520230460030219
Journal of Radiological Science and Technology
2023 Volume.46 No. 3 p.219 ~ p.229
Evaluation of RPL Glass Dosimeter Characteristics and Uncertainty Evaluation of Reading Correction Factors
Mok Seong-Yun

Kang Yeong-Rok
Kim Hyo-Jin
Brian McCarthy
An Hyun
Abstract
In this study, basic characteristics such as reproducibility, linearity, and directionality of RPL glass dosimeters were evaluated to improve the reliability of dose evaluation through RPL glass dosimeters, and uncertainty elements such as sensitivity by glass element and magazine slot sensitivity were evaluated. Using a mathematical model to calibrate the measured values of the RPL glass dosimeter, the measurement uncertainty was calculated assuming an example. As a result of the characteristic evaluation, the RPL glass dosimeter showed excellent performance with a standard deviation of ¡¾1% (1 SD) for the reproducibility of the reading process, a coefficient of determination for linearity of 0.99997. And the read-out of the RPL glass dosimeter are affected by the circular rotation direction of the glass dosimeter during irradiation, fading according to the period after irradiation, the number of laser pulses of the reader, and response degradation due to repeated reading, it is judged that measurement uncertainty can be reduced by irradiation and reading in consideration of these factors. In addition, it was confirmed that the dose should be determined by calculating the correction factors for the sensitivity of each element and, the sensitivity of each reading magazine slot. It is believed that the reliability of dosimetry using glass dosimeters can be improved by using a mathematical model for correction of glass dosimeter readings and calculating measurement uncertainty.
KEYWORD
Glass Dosimeter, Dose Evaluation, Characteristic Evaluation, Correction Factor, Measurement Uncertainty
FullTexts / Linksout information
Listed journal information